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HIGHLIGHTS

e Treatment of landfill leachate was examined using electrochemical process.

e Coupling of electrocoagulation (EC) and electro-oxidation (EO) was investigated.

o The EC process was more efficient compared to couple EC/EO process.
e The treated effluent was not toxicity to Rainbow trout and Daphnia.

ARTICLE INFO ABSTRACT

Handling Editor: P V Nidheesh The study investigated the treatment efficiency of coupled electrocoagulation (EC) and electrooxidation (EO)
processes for landfill leachate treatment in batch and continuous mode. The EC process (iron anode and graphite
cathode) at 18.2 mA/cm? for 2.5 min resulted in COD, turbidity, total phosphorus, total coliforms and fecal
coliforms removal of 58.1, 72.9, 98.5, 97.9, and 97.2% respectively. Under the same operating conditions, the
coupled EC/EO (Ti-Pt anode, bipolar iron electrode, and graphite cathode) processes showed that the COD,
turbidity, total phosphorus, total coliforms, and fecal coliforms removal of 56.5%, 78.3%, 96.3%, 97.2% and
fecal coliforms 72.7%, respectively. The energy costs associated with the EC and EC/EO were 0.11 and 0.25
$/m°, respectively. Compared to the batch configuration, the continuous configuration of EC resulted in similar
processing performance. However, the EC/EO process resulted in the production of chlorates, perchlorates, and
trihalomethanes as by-products. Moreover, the continuous process slightly increases the pH and ammonia
concentration of the leachate and also resulted in the metallic sludge production with an average dryness of
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4.2%. The toxicity tests determined that the treated effluent was not toxic to Rainbow trout and Daphnia.

1. Introduction

In the context of waste management, the operating life of a com-
posting site or landfill can range from 25 to 60 years. Some municipal-
ities are planning post-closure monitoring for about 30 years until the
site has no longer a negative impact on the surrounding environment.
Such impacts could be manifested by percolations of leachate in the soil,
to the groundwater or even drifting towards the river systems, which
constitutes a high risk of disease of the inhabitants but also the
contamination of the fauna and flora (Litvan, 1995; Kehila et al., 2009;
Abiriga et al., 2021; Wijekoon et al., 2022). Indeed, the leachate
pollution index calculated for many landfills such in Bangladesh, India
and Malaysia were very high ~19.8 (Parvin and Tareq, 2021). During

leachate infiltration, the soil structure is altered due to mineralogical
transformations, which can reduce its specific surface area and its
porosity (Onyelowe et al., 2021). On the one hand, the alterations of
permeability coefficient and in the total pore volume of soil are linked to
the high salinity of leachate that has infiltrated it (Khodary et al., 2021).
Moreover, alteration of soil structure is also due to the cationic ex-
changes of the system with the formation of new minerals such as hy-
droxyapatite, pyromorphite, ferrihydrite, hydroxy-pyromorphite, and
strengite (Frempong and Yanful, 2008). Specifically, in the event of a
leachate leak and depending on the permeability of the soil, the
contamination of groundwater is at high risk (Papadopoulou et al.,
2007; Aderemi et al., 2011; Alghamdi et al., 2021). In fact, studies have
reported high concentration of certain physicochemical parameters,
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including conductivity (4.2-21.5 mS/cm), total dissolved solids
(3.3-16.3 g/L), chlorides (2.2-11.7 g/L), sulfates (0.6-1.1 g/L), Mn
(0.2-0.6 mg/L), and Fe (0.04-5.9 mg/L) in well water near landfills
(Abd El-Salam and I. Abu-Zuid, 2015; Alghamdi et al., 2021; Parvin and
Tareq, 2021). In addition, the interaction of organic carbon with heavy
metals increases the mobility of the metals which in turn contaminate
the ground-water (Christensen et al., 1996; Wei et al., 2021). Apart from
organic carbon, the pH of the leachate also influences the mobility of
heavy metals (Cameron, 1980; Chen, 1996; Kulikowska and Klimiuk,
2008, Xie, Ma et al. 2015). The contamination of water by the leachate
depends on the method of waste disposal (active or not, controlled or
not), runoff, and precipitation. Research investigation reported high
concentration of organic matter (up to 250 mg/L) and ammoniacal ni-
trogen (up to 200 mg/L) in a river near an uncontrolled active landfill
site (Yusof et al., 2009). However, near controlled landfill sites (active
and inactive), high concentrations of heavy metals and inorganic ni-
trogen were reported (Yusof et al., 2009). The continuous leaching of
landfill leachate in water and in soil disturbed the native microbial
community (Gu et al., 2022). In soil, studies reported that, following
leachate contamination, aerobic chemohetrotrophic and cellulolysis
communities were significantly reduced while denitrifying communities
tended to be more abundant (Hou et al., 2021; Gu et al., 2022). In water,
studies have shown that the contamination of ponds by leachate (BOD
and nutrients increase) led to a proliferation of microorganisms such as
Escherichia coli, Pseudomonas flourescens, Streptococcus feacalis, Salmo-
nella species, Staphylococcus aureus, Bacillus species, Flavobacterium
species and Saprophytic spores and also increases reproductive stress in
fish (Roling et al., 2001; Nwabueze, 2011). Considering the soil as a
vector of pollution and a growth substrate, its alteration by leachate can
inhibit the growth of the roots of certain plants and germs due to its
genotoxicity and sodicity (Wong and Leung, 1989; Devare and Bahadir,
1994; Pessarakli and Szabolcs, 1999; Sang et al., 2006; Li et al., 2008).
Leachate phytotoxicity tests have effectively demonstrated their harm-
ful impacts on model species such as Sinapis alba and Triticum aestivum
(Palm et al., 2022). Various studies have focused on the lethal and
sublethal effects of leachate on indicator organisms. The main conclu-
sions relate to the fact that leachate induces endocrine disruption, birth
and developmental anomalies in many organisms such as carps, mouse,
daphnia magna and brook trout (Calleja et al., 1986; Li et al., 2004;
Alkassasbeh et al., 2009).

Leachate is a refractory waste effluent heavily loaded with polluting
fractions. It is produced when water infiltrates the landfill or compost
pile and is combined with the water produced during the aerobic
decomposition of organic matter. Given its complexity, the regulations
require adequate treatment of this effluent before it is released into the
natural environment. Nevertheless, the concentration and the physico-
chemical characteristics of pollutants varies from one leachate to
another because of the type of buried waste, the structure of the site, the
climatic conditions, and their variability. According to several studies,
COD concentrations can vary from 199 to 12,000 mg/L and BODs from
less than 1-3000 mg/L (Garcia-Lopez et al., 2014; Tahiri et al., 2016;
Naveen et al., 2017). Ammonia and phosphorus were range from 1.3 to
21,800 mg N-NH,4 /L and 0.52-485 mg/L, respectively (Krogmann and
Woyczechowski, 2000; Gagnaire et al., 2011; Rajabi and Vafajoo, 2012;
Brown et al., 2013). The pH of the leachate is another important factor
which depends on the age of the site. In case of open site, the physico-
chemical parameters of leachates varied significantly with time
(Cameron, 1980; Kulikowska and Klimiuk, 2008; Xie et al., 2015).

The presence of emerging and refractory pollutants such as chlori-
nated alkyl-phosphates, diethyl toluamide, perfluorinated compounds,
atrazine, and morphine in leachates has been detected with a concen-
tration ranging from ng/L to pg/L, (Chian and DeWalle, 1976; Chian,
1977; Christensen et al., 2001; Wiszniowski et al., 2006; Oman and
Junestedt, 2008; Renou et al., 2008; Eggen et al., 2010; Masoner et al.,
2014). Due to the potential impact of landfill leachate on the environ-
ment, various research investigations were carried out at laboratory and
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pilot scales for its treatment. Described as innovative and promising,
those works are based on robust purification processes including mem-
brane bioreactors, sequencing batch reactor and advanced oxidation
processes such as process based on Fenton reaction (Lin and Chang,
2000; Laitinen et al., 2006; Bohdziewicz et al., 2008; Hu et al., 2016;
Jagaba et al., 2021; Wu et al., 2021). Indeed, compared to conventional
treatment processes, advanced oxidation processes have demonstrated
their high efficiency in the degradation of refractory pollutants present
in leachate following the production of species with high oxidation
potential such as hydroxyl radicals and persulfates (Al-Qodah and
Al-Shannag, 2019; Ushani et al., 2020; Bandala et al., 2021). The com-
bination of advanced oxidation processes also showed even greater
treatment performance with a clear reduction in energy costs (Al-Qodah
et al., 2020a, 2020b; Sanni et al., 2022).

The treatment of leachates by electrolytic processes, in particular
electrocoagulation and electrooxidation, is a substitution of physico-
chemical processes. The main advantage of EC, EO, and the coupled EC/
EO process are: decrease in the production of metallic sludge compared
to chemical coagulation, in situ coagulant production, stability of the
salinity of the effluent by not adding anions associated to the metal salts
(chemical coagulants), possibility of application of EC at native pH,
direct oxidation at the anode and indirect oxidation by the species
generated as a function of the ionic content of the effluent. Studies have
highlighted the performance of these electrochemical processes
compared to physicochemical processes for the treatment of leachate in
terms of COD reduction, color removal, and heavy metals removal
(Meunier et al., 2006; Ilhan et al., 2008; Veli et al., 2008). This work
aims to develop the treatment process for the operational and closed
composting site of landfill leachates located in Quebec, Canada. More-
over, The study attempted to develop a single-step treatment process to
achieve maximum clarification, phosphorus removal, and disinfection
for leachate mixture (from a closed sanitary landfill and an operating
composting site). Further, the study analyzed the toxic effect of the
treated leachate on the indicator organisms.

2. Material and methods
2.1. Leachate sampling

The leachates (comprised of composting and landfill leachates) uti-
lized in the study were provided from an aerated lagoon process
installed in a sanitary site located in the municipality of Bury in the
province of Quebec. The aerated lagoon process was followed by
chemical coagulation/flocculation and disinfection using hydrogen
peroxide. The composition of mixture leachates (ML) recovered at the
outlet of the biological process is presented in Table 1.

In order to assess the performance of electrolytic treatment (EC and
EC/EO) leachate samples were taken after the lagoon step. For the
purpose of testing disinfection, raw (untreated) leachate was sampled to
seed the post-lagoon leachate in terms of bacteria, especially during the
shutdown of the treatment station (winter period) and when coliform
concentrations are very low. The 1% v/v spiking allowed to increase the
total coliform and fecal coliform concentrations and therefore to prop-
erly assess the disinfection rates. Table 1 presents the average physico-
chemical and microbiological characteristics of the two types of effluent.

2.2. Experimental devices

2.2.1. EC and EC/EO operated in static batch

The EC static batch reactor consists of an iron anode (Fe) and a
graphite cathode (Gr) connected in a monopolar configuration (Fig. 1.
a.). The electrodes were completely immersed in the reactor. The elec-
trodes were 1 cm apart and was chosen on the basis of the previous
work. The electrodes were fixed at this distance since it influences the
electrical resistance of the electrolyte which is proportional to the ohmic
drop and therefore influences the effectiveness of the treatment
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Table 1
Physico-chemical and microbiological characteristics of leachate.

Leachate after Raw leachate

lagoon treatment

Physico-chemical and Unit
microbiological parameters

COD mg/L 997.2 + 89.3 6243,6 +
1763.7
Turbidity UTN 77.4 £ 23.4 1873.7 +
413.3

pH - 7,65 £+ 0,01 7.8 £1.1

Suspended solid mg/L 235 + 71,8 -

Total solid mg/L 2496,25 + 50,2 -

Total phosphorus mg/L 29+1.1 9.6

Residual iron mg/L 8.6 +21 10.3

Ammonia mg N/L 0.4 +0.2 -

Nitrate mg/L 310 + 7,1 -

Nitrite mg/L <0,4 -

Chloride mg/L 282.6 £ 1279 670

Chlorate ug/L <10 -

Perchlorate ug/L <0,5 -

Trihalomethane ug/L <4 -

Total coliform UFC/ 2.7%10* £ 2.9 10°  1.8%10° +
100 mL 2.4% 10°

Fecal coliform UFC/ 4.6 *10> £ 3.1¥10>  3.4*10% £
100 mL 2.3*10*

(Hakizimana et al., 2016; Ding et al., 2021). The two electrodes had an
active surface area of 110 cm?. The electric current was applied using
current generator type EXTECH R1.8. The varying current density from
4.5 to 18.2 mA/cm? was examined. The working volume of the reactor
was 0.5 L and the continuous mixing of the leachate was carried out
inside the reactor using a magnetic stirrer.

The electrolytic cell combining EC and EO (EC/EO) contained three
electrodes (Fig. 1.b.). A Ti-Pt electrode was used as anode with a surface
area of 65 cm? and a Gr electrode was used at the cathode with an area of
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110 cm?. A bipolar Fe electrode, not connected to the current generator,
was installed between the cathode and the anode with a surface area of
110 cm? This configuration was chosen to promote both the anodic
oxidation reactions at the Ti-Pt electrode and the half surface of the Fe
electrode (bipolar) while ensuring its dissolution which subsequently
will form an iron coagulant. The bipolar Fe electrode was installed at a
distance of 1 cm on either side of the anode and cathode. The working
volume of the reactor was 0.5 L.

2.2.2. EC operated in continuous mode

The continuous EC experimental unit contained three compartments
for (a) EC process, (b) flocculation, and (c) settling (Fig. 1.c.). The EC
and flocculation compartments have a working volume of 0.5 L while
the settling compartment had a working volume of 4.7 L. The configu-
ration of the EC electrodes and the connection to the current supply were
similar to those adopted in the static batch. The settling tank contained
five inclined slats having a total area of 1126 cm?. The leachate inlet
feed was set at 186 mL/min and that of the flocculant preparation at 7.4
mL/min (0.5 g/L of anionic polyacrylamide polymer). These parameters
have been set so as to have an electric charge of 0.16 Ah/L.

2.3. Analytical methods

The concentration of the chemical oxygen demand was analyzed
according to the MA protocol. 315-COD 1.0 from the Center of Expertise
in Environmental Analysis of Quebec (CEAEQ). The COD values were
read using a spectrophotometer at 600 nm using a spectrophotometer of
the UV 0811 M136 type from the Varian Canada Inc. brand. The pH
measurements were carried out with Fisher Scientific Accument brand
pH meter (model XL25). The turbidity measurement was evaluated with
Hach 2100 turbidimeter.

N b
Fe anode Ti-Pt anode
Gr cathode Gr cathode
Fe bipolar
Current generator
. s : Current generator
Magnetic agitator
Magnetic agitator
c 8

sl\\

Fig. 1. Schematic description of the electrolytic units: a. EC operated in batch mode, b. EC/EO operated in batch mode and c. EC operated in continuous mode
1: Supply tank; 2: EC cell; 3: Flocculation cell; 4: Settling tank; 5: Sludge recovery tank; 6: Recovery tank for treated leachate; 7: Current generator; 8: Preparation of

anionic polymer.
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The analysis of residual iron and total phosphorus was carried out
using ICP-AES of the Varian brand, model vista AX, Australia. Leachate
samples were acidified with 5% nitric acid and stored at 4 °C until
analyzed. Chloride ions were analyzed by the ion chromatography
method using an ion exchange resin column of Ion brand PAC AS11-HC
4 pm and using the Integrion HPIC device from Thermo. The chlorites,
chlorates, and perchlorates were analyzed by LC-MS-MS using the
Thermo TSQ Quantum analyzer. The nitrites and nitrates were analyzed
by the Lachat autoanalyzer following the 4500-NO3 E standards. The
ammoniacal nitrogen was also analyzed by the Lachat auto-analyzer,
QuickChem, according to the colorimetric method 10-107-06-2-B. The
analysis of trihalomethanes was carried out by GC-MS/headspace of the
Clarus 500 Perkin brand.

The concentration of suspended solids (SS), total solids (TS), and the
measurement of dryness of metallic sludge were carried out by using MA
method. 115-S.S. 1.2 of CEAEQ.

The total and faecal coliforms were measured according to the
membrane filtration method (MA. 700-Col 1.0 for total coliforms and
MA.700-Fec.EC 1.0 for faecal coliforms) proposed by CEAEQ and carried
out by laboratories of Quebec City, water quality service. Before being
sent to the laboratory, the samples were placed in 250 mL containers
treated with sodium thiosulfate, in order to inhibit persistent oxidative
reactions. The samples were then placed in a cold room (4 °C) away from
light. Subsequently, the analysis were carried out within a period not
exceeding 48 h.

The analysis of the toxicity of leachate was carried out by Bureau
Veritas laboratories. The toxicity on rainbow trout (Oncorhynchus
mykiss) was evaluated according to the method QUE SOP-00408 under
reference SPE1/RM13 (2nd edition Environment Canada 2000). The test
was carried out on a volume of 16 L of leachate under controlled tem-
perature, lighting and density conditions. Secondly, the toxicity on
Magna daphnia was evaluated according to the method QUE SOP-00406
under reference SPE1/RM14. The method consists in evaluating the
LCs of the sample (at six different concentrations % v/v: 0, 6.25, 12.5,
25, 50 and 100) over 48 h in containers containing 10 organisms and a
volume of 150 mL of sample. As in the rainbow trout test, the temper-
ature, lighting and loading density conditions were controlled. Finally,
the toxicity to Vibrio fischeri (bioluminescent bacteria) was evaluated
according to the AB SOP-00083 method under reference SPE1/RM24.
The method consists in exposing Vibrio fischeri to different concentra-
tions of the sample and then measuring their light inhibition (ICs¢) from
0 to 15 min.

3. Results and discussion
3.1. Treatment of leachate by EC and EC/EO operated in static batch

3.1.1. Effect of electrical charge

The EC process is an electrochemical coagulation process which
consist of formation of coagulating species from the anodic dissolution
of metal electrodes (electrodes of iron, aluminum, zinc, and magnesium)
(Kobya et al., 2003; Sahu et al., 2014; Nidheesh and Singh, 2017). These
reactive species subsequently react with suspended matter and colloids
to stabilize their negative charges (due to pH, isoelectric points, and zeta
potential) to allow the aggregation, and thus reduce the turbidity of the
effluent. The formation of aggregates was due to the van der Waals
attraction forces and the electrostatic repulsion forces (DLVO theory:
Derjaguin Landau Verwey Overbeek) (Lin et al., 2014). The repulsive
forces are closely related to the thickness of the double layer of mole-
cules which is compressed by the increase of ionic strength (additions of
metallic ion).

The EC and EC/EO processes are mainly based on the dissolution of
the anodic metal. In the case of iron, it leads to the formation of iron
hydroxide acting as a coagulant. The following equations describe the
coagulant production reactions, in particular ferrous and ferric hy-
droxides (Fe(OH), and Fe(OH)3) (Lakshmanan et al., 2009; Moussa
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et al., 2017).

Fe(s) - Fe2+ +2e— :E0 = 044V @
Fe(s) —» Fe3 ++3e— : E0O= 0.037 V )
Fe2+ > Fe3 + +e—.:E0= —0.771 V 3)
2H20 + 2e — — 20H — + H2(g) )
Fe2+ + 20H — — Fe(OH)2(s) 5)
4Fe2+ + 10H20 + 02 — 4Fe(OH)3 (s) + SH+ (6)

Dissolved iron concentrations can be estimated using Faraday’s law,
presented in Eq. (7), which relates the intensity of the applied current to
the process start-up time. With the concentration of iron theoretically
produced and that experimentally obtained, it is possible to describe the
faradaic efficiency of the process which in the case of the study is an
average of 89.9%:

m(Fe)experimental _ mi(Fe) — mf(Fe)

FE = = - 7
m(Fe)theoritical Do) )

where FE: Faradaic efficiency [%]; mi (Fe): initial mass of the iron
electrode [g]; mf (Fe): final mass of the iron electrode [g]; i: intensity of
the applied current [A]; t: processing time [s]; MW (Fe): molecular
weight of iron [g/mol]; z: number of valence of iron; F: Faraday
constant.

In order to determine the optimal electric charge (product of current
intensity and treatment time per unit of volume) for the clarification,
disinfection and dephosphatation of the leachate pretreated by lagoon,
EC and EC/EO tests have been carried out by varying the applied current
density and the treatment time. Table 2 shows the percentages of COD,
turbidity, and total phosphorus removal by varying current density from
4.5 to 9.1 mA/cm? and treatment time from 2.5 to 10 min which cor-
responds to quantities of electricity of 0.08, 0.16, and 0.32 Ah/L. The
initial concentrations of COD, total phosphorus, and turbidity of
leachate were 997.1 + 89.2 mg/L, and 2.9 + 1.1 mg/L, and 77.4 + 23.5
NTU respectively.

The obtained results showed that the residual total phosphorus

Table 2
Effects of the amount of electricity and the combination of EC and EO on COD.
turbidity and total phosphorus removal.

Process ~ Amount of Current COD Turbidity Total
electricity density removal removal phosphorus
[Ah/L] [mA/cm?]; [%] [%] removal [%]
Time of
treatment
[min]
EC/EO 0.32 9.1 mA/ 53.72 90.62 99.26
cm?; 10 min
0.16 9.1 mA/ 53.45 90.64 97.55
sz; 5 min
4.5 mA/ 58.72 92.88 98.77
cm?; 10 min
0.08 9.1 mA/ 30.34 51.20 88.02
cm?; 2.5 min
4.5 mA/ 17.77 43.17 86.06
sz; 5 min
EC 0.32 9.1 mA/ 43.72 72.74 98.04
cm?; 10 min
0.16 9.1 mA/ 42.91 71.15 96.82
cmz; 5 min
4.5 mA/ 47.17 49.52 97.55
cm?; 10 min
0.08 9.1 mA/ 27.26 68.88 91.44
cm?; 2.5 min
4.5 mA/ 10.74 53.94 96.57
cm?; 5 min
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concentration was higher than the discharge guideline value (<0.3 mg/
L) while using EC/EO process at a current density of 4.5 and 9.1 mA/cm?
(for an electric charge of 0.08 Ah/L). In fact, phosphorus abatement
rates between 86.06 and 88.02% were obtained while 89.6% abatement
was required to meet the rejection criteria for residual concentrations of
total phosphorus. A significant reduction in COD, turbidity, and total
phosphorus were achieved at current density of 4.5 and 9.1 mA/cm? (for
an electric charge of 0.16 Ah/L) by using EC and EC/EO processes
respectively. It is worth noting that a relatively high concentration of
coagulant agent (around 173.6 mg/L) was produced during electro-
chemical treatment. The treatment efficiency of EC/EO process when
applying electric charge of 0.16 and 0.32 Ah/L were similar. This might
be due to the enhanced production of coagulants at higher current
density which decreases the turbidity removal (Agoungbome et al.,
2016). By comparison, studies have reported 93% total phosphorus
removal from leachate, with an initial concentration of 4.5 mg/L of total
phosphorus and by applying EC (iron electrodes) with an electric charge
of 0.03 Ah/L and a current density of 3 mA/cm? (Devlin et al., 2019). For
higher total phosphorus concentrations (52.13 mg/L), an investigation
obtained a reduction of more than 99.9% by applying an electric charge
of 0.41 Ah/L and a current density of the order of 2 mA/cm? and that is
0.12 A for 100 min of treatment using a hybrid EC (Omwene et al.,
2018). Compared to the present work, the two studies show a tendency
for the reduction of total phosphorus apart from the imposed operating
conditions. The physico-chemical characteristics are different from one
leachate to another. Among the characteristics influencing their treat-
ability by coagulation processes are the pH, redox potential, and the
concentration of suspended matter (Sansalone and Kim, 2008). Since the
concentrations of suspended solids are different and can compete with
particulate phosphorus and therefore promote or limit its reduction
rates. The EC/EO process showed to have high removal efficiency
compared to EC alone. This is probably due to the ionic charge of the
produced cogulant, where during the EC/EO, the oxidation of iron to
ferric iron is favored then its reaction with the hydroxide ions leads to
the production of Fe(OH)s. Fe(OH)3 has a greater coagulant power than
Fe(OH); generally produced during EC alone (Lakshmanan et al., 2009).

3.1.2. Effect of reaction time and current density

The effect of varying reaction time and current density to a given
electrical charge has been experimentally identified as optimal at 0.16
Ah/L. By applying 0.16 Ah/L, the COD and turbidity reductions by EC
process were around 45.1 and 60.3% and were 56.1 and 91.7% by EC/
EO. Knowing that these tests were carried out at the same electrical
charge of 0.16 Ah/L, and according to Faraday’s law, the amount of
coagulant (iron hydroxides) would be the same (Chen et al., 2018;
Garcia-Segura et al., 2018). For example, by operating EC during 10 min
of treatment by applying 4.5 mA/cm? of current density would lead to
similar COD abatements obtained during the application of EC during
2.5 min at a current density of 18.2 mA/cm?. This proposition remains
valid as long as the quantity of electricity has been tested under a
relatively low current density. Indeed, the reaction kinetics and ten-
dency are less predictable by increasing the current density and reducing
the treatment time below a limit threshold specific to the electrode used,
to the cell, etc. Above this limit, other secondary reactions occur, such as
significant development of Hj at the cathode instead of OH ™, which may
reduce the treatment efficiency (Dubrawski et al., 2014; Bariscit and
Turkay, 2016; Guo et al., 2022). Also, the reduction of treatment time by
increasing the current density cannot be done systematically since a
minimum contact time is required for the reaction between coagulants
and suspended matter/colloids. A study using EC process in batch mode,
reported that the reductions of COD and turbidity did not exceed 50 and
40% respectively at an electrical charge of 0.2 Ah/L for 50 min of
treatment (Li et al., 2011). Moreover, several studies have obtained COD
reduction between 21 and 48% by applying current densities between
2.98 and 75 mA/cm? with varying treatment times of 30-100 min
(Zailani and Zin, 2018). Compared to these studies, the present results
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are very promising in terms of COD reduction. This can be due to the
initial characteristics of the treated leachate but also to the passivation
of the electrodes during the experiment which lasts relatively longer
(Ingelsson et al., 2020; Al-Raad and Hanafiah, 2021). Since, the aim of
the present work is to scale up the processes for leachate treatment, the
long processing times are limiting, and therefore the present work opted
to increase the current density (from 9.1 mA/cm? to 18.2 mA/cm?)
against short processing times while keeping the electrical charge con-
stant. In fact, at pilot and pre-industrialization visions of the process, it is
advisable to operate at relatively low current densities to facilitate
scale-up (Den, 2006; Santiago et al., 2014).

The treatment efficiency of EC and EC/EO are comparable to those
obtained by conventional physicochemical treatment comprising of
chemical coagulation (CC), chemical flocculation followed by settling.
Fig. 2 shows COD values, turbidity, and total phosphorus concentrations
after EC, EC/EO, and CC treatment. In terms of removal of COD and total
phosphorus, and compared to EC/EO and CC, EC resulted in maximum
removal of 56.9 and 97.5% of COD and total phosphorus, respectively.
However, CC achieved the highest turbidity reduction rate of 88.1%.
Along with these results, the residual iron concentrations in all the su-
pernatant samples, after EC or EC/EO followed by flocculation and
settling, were between 1.3 and 4.6 mg Fe/L. This iron concentration
gives an orange-yellow color and may be the source of residual turbidity
in leachate treated with EC and EC/EO. The CC process adopted by the
station is supported by a pH adjustment which helps to define iron
speciation and its solubility. Under optimal conditions, all iron used as a
coagulant will be insoluble and will end up in the metallic sludge with
minimal iron ion concentration in the supernatant.

3.1.3. Disinfection by-products formation by EC and EC/EO

Concerning leachate disinfection, and as shown in Fig. 3, EC and EC/
EO allowed 97.9% of total coliforms removal after 2.5 min of treatment
at 18.2 mA/cm?. As for fecal coliforms, and under the same operating
conditions, EC allowed a reduction of 97.2%, whereas EC/EO resulted in
72.7% of fecal coliforms removal. This removal would allow the
leachate treatment plant to meet the discharge criteria set respectively at
2400 and 200 CFU/100 mL for total coliforms and fecal coliforms. In
fact, the total coliforms of leachate supernatant treated either by EC or
EC/EO are 300 CFU/100 mL and fecal coliforms 20 and 200 CFU/100
mL, respectively. The disinfection mechanism by these processes con-
sists on the removal of bacteria attached to colloids and suspended
solids, hence the relevance of clarification. Furthermore, it may also be
linked to direct oxidations at the anode or via electrogenerated oxidants
such as hypochlorite and hydrogen peroxide (Finch and Smith, 1986;
Hakizimana et al., 2016; Elazzouzi et al., 2017). Contrary to what was
expected, EC allowed more disinfection than the EC/EO pair although
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Fig. 2. Effect of current intensity and treatment time on COD, turbidity and
total phosphorus reduction by EC and EC/EO.
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Fig. 3. Abatement of total coliforms and fecal coliforms by EC vs EC/EO.

the objective behind this coupling was to increase the generation of
oxidants on the Ti-Pt anode.

In addition to evaluating the performance of leachate treatment by
the electrolytic process, this work also analyzed the formation of by-
products. From the point of view of producing disinfection chlorinated
by-products, the leachates studied contain an average chloride ion
concentration of 282.6 mg/L. The oxidation of these ions can lead to the
formation of chlorates and perchlorates which constitute a risk for
human health and the environment (Bergmann et al., 2009; Azizi et al.,
2011; Ghernaout et al., 2011; Pérez et al., 2012). The following equa-
tions describe their formation from the chloride ions successively
forming hypochlorite ions, chlorite, chlorates, and perchlorates where
several reaction pathways are possible:

Cl— + 20H - = CIO — + H20 + 2e— 8)
ClIO—- + 20H — — CIO2 — + H20 + 2e— )
ClO2— + 20H — - ClO3 — + H20 + 2e— (10)
ClO3 — + 20H — — ClO4 — + H20 + 2e— a1
ClO3 — + H20 - ClO4 — +2H + + 2e— (12)
ClO3 - + OHO - ClO4 — +H+ +e— (13)

Therefore, residual concentrations of 600 pg/L of chlorates and 230
ng/L of perchlorates are generated after 2.5 min of electrolysis following
the application of EC/EO process operated at a current density of 18.2
mA/cm? (Fig. 4.a.). Studies have also reported the formation of chlorate
following EC/EO on leachate initially containing 5000 mg/L of chlo-
rides. Chlorate concentrations were in the order of 230 mg/L when
applying an electrical charge less than 1 Ah/L with a BDD anode. This
study also showed that the use of DSA anode (Ir-Ru and Ir-Ta-Sn) led to
significantly less chlorate formation (Ding et al., 2018). Otherwise,
chlorate and perchlorate concentrations of less than 25 pg/L are recor-
ded when the EC process is applied. This is probably related to the type
of anode used in the two processes (EC: Fe vs EC/EO: Ti-Pt and Fegipolar)
and the density of the current applied (Czarnetzki and Janssen, 1992;
Chen, 2004; Sanchez-Carretero et al., 2011; Lacasa et al., 2012). Indeed,
this is mainly due to the anode material which influences the reactions
of anodic oxidation and oxygen evolution. Electrodes with high oxygen
evolution potential (non-active anode) such as BDD and PbO, tend to
generate a lot of chlorinated by-products while electrodes with low
oxygen evolution potential (activate anode) such as IrO5 tend to convert
chlorides into residuals chlorine useful for disinfection (Ghernaout et al.,
2011).

On the other hand, the electrolytic oxidation of chloride ions can lead
to the formation of hypochlorous acid (HCIO) and hypochlorite (CIO™).
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Fig. 4. Formation of by-products by applying EC vs EC/EO: a. Formation of
chlorate and perchlorate and b. Formation of trihalomethane.

HCIO and ClO™ can react with large numbers of organic molecules
present in the leachate. These reactions on organic compounds are often
the source of chlorinated organic compounds such as trihalomethanes
(THMs), as well as haloacetic acids (Amy et al., 1987; Hong et al., 2007).
Fig. 4.b. shows that the application of the EC, for 2.5 min of treatment
time at the current density of 18.2 mA/cm?, does not generate THMs
while the EC/EO process leads to the formation of chloroform and
dichlorobromomethane with concentrations of 5.6 and 4.7 pg/L. How-
ever, under these operating conditions, the concentrations of THMs are
relatively low or even lower than the drinking water limits set at 80 pg/L
(Regulation on the quality of drinking water in Quebec). This could be
due to the type of organic and ammoniacal dissolved substances which
are precursors to the formation of trihalomethanes (Diaz et al., 2011;
Ben-Asher and Lahav, 2016). In support, studies have shown that the
formation of THMs, mainly chloroform, depends on the current density
applied, the organic and ionic content of the leachate (Anglada et al.,
2011; Xu et al., 2020).

3.1.4. Estimation of energy costs of EC and EC/EO

Given that the objective of this work is to evaluate a potential sub-
stitution of the physico-chemical treatment (chemical coagulation fol-
lowed by disinfection with hydrogen peroxide) of leachate by a one step
electrochemical treatment, it is necessary to consider the treatment cost
along with the performance efficiency (Ebba et al., 2021a). The oper-
ating costs are a determining factor in the implementation of the
treatment process at pilot scale. This includes its processing perfor-
mance, its autonomy, the life of its components and the energy costs
linked to its continuous operation (Demirbas and Kobya, 2017; Hashim
et al.,, 2017; Ebba et al., 2021b). Starting from the fact that the EC and
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EC/EO applications allow a significant improvement in the treatment of
leachate, subject of this study, the estimation of their associated energy
costs is based on the values of current intensity applied, the required
processing time, and the current voltage. The energy cost was calculated
according to the formula presented below:

Energy costs [$ /m3] = (i*U*t*PKw*10-3) / V a4

With i: current intensity [A]; U: Voltage [V]; t: processing time [h];
Pxw: Price per kilowatt hour [$ 0.09]; V: Volume treated [m3].

The energy costs related to the operation of EC were estimated to
0.11 $ CAD for the treatment of one cubic meter of leachate, which is
approximately two times less than the EC/EO process (0.25 $/m®). This
would be due to the voltage imposed during the application of the po-
tential difference which is greater during EC/EO. In other words, since
the inter electrode distance of EC/EO is 2 cm while that of EC is 1 cm, it
would lead to greater resistance of the electrolyte (leachate) and
therefore, higher voltage imposition under galvanostatic conditions
(Béjar and Gutiérrez, 1993; Caspersen and Kirkegaard, 2012). Compared
with the literature, these results are in line with most of the work that
has been interested in the treatment of leachate electrochemically. The
energy costs vary between 1.4 and 10.1 $/m® and are closely linked to
the operating conditions adopted but also to the characteristics of the
effluent, notably by its conductivity/resistivity (Ilhan et al., 2008; Ding
et al., 2018; Sediqi et al., 2021).

3.2. Treatment of leachate by EC operated in continuous mode

The EC and EC/EO tests carried out in static batch have shown that
the rates of clarification and phosphorus removal are quite similar by
applying an electric charge of 0.16 Ah/L and a current density of 18.1
mA/cm? However, the EC/EO process has led to a relatively large
production of by-products mainly chlorates and perchlorates. Based on
these results and taking into account the energy consumption of each
process (0.11 $,/m? for EC and 0.25 $,/m?® for EC/EO), the EC operation
was investigated in continuous mode for 300 min to analyze the toxicity
of treated leachate by EC with a working volume of 34 L. The aim of the
study was to provide an overview of the treatment of leachate by elec-
trochemical means, notably by EC as a substitution for the physico-
chemical processes adopted by the leachate treatment station (chemical
coagulation followed by disinfection with hydrogen peroxide). To do
this, the amount of electricity and the current density were kept con-
stant. The input flow rate of leachate pretreated by lagoon was set so as
to have the residence time of 2.5 min in EC compartment.

As shown in Table 3, in continuous EC process, the average COD and
turbidity removal were 73.3 and 72.2%, respectively. Compared to
static batch tests, which showed the reduction of 56.9 and 75.4%
respectively, COD reduction is more effective in continuous configura-
tion while it is relatively similar in terms of turbidity removal. This could
be related to the variable contents of the same leachate affected by
temporal variations of the sample. Also, an increase in pH from an
average of 7.5-8.5 was observed. This increase was also noticed during
the static batch tests. It is mainly related to the cathodic reduction of
water and the release of hydroxide ions ([lhan et al., 2008; Aoudjehane
et al., 2010). An average reduction of 67.4% of TSS was observed. For

Table 3

Leachate characteristics before and after continuous EC operation.
Physicochemical characteristics Unit Inlet Outlet
DCO mg/L 705.8 + 33.8 188.5 + 40.6
TSS mg/L 260 + 25.7 84.8 £17.3
Turbidity NTU 197.1 + 25.2 52.7 + 4.6
pH - 7.5+ 0.1 8.5+ 0.1
Total phosphorus mg/L 2.6 £0.1 0.3+0.1
NO3- mg/L 347.1 + 8.1 283.2 + 38.7
N-NH4+ mg/L 9.2+ 0.5 11.1+0.1
Total coliform CFU/100 mL  3.5*10* 4.6*10°
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higher current densities and longer treatment times, previous studies
were reported to achieve removal from 84 to 99% (Ahsan et al., 2014;
Amani et al., 2014; Kabuk et al., 2014). As with suspended particles and
colloids (negatively charged due to pH and isoelectric point), total
phosphorus, mainly particulate, and total coliforms were reduced by
86.6 and 86.7% respectively. Following the application of EC, there is
the cathodic reduction of nitrates to ammonia (Koparal and Ogiitveren,
2002; Dia et al., 2017) according to the following equations:

NO3 — + H20 + 2¢— — NO2 — +20H— (15)
NO2 - + 5H20 + 6e — — NH3 + T0H— (16)
NH3 + H20 - NH4 + + OH— a7)

A slight decrease in nitrate concentration were observed along with
an increase in the concentration of ammonia between the inlet and the
outlet at a rate of 14.1%. Several studies have also reported the re-
ductions of nitrates to ammonium by different cathodes such as Cu/Zn,
Fe, SS, and Al assisted by the effect of chloride ions and by anodes with
weak oxygen evolution potential, such as Ti-Pt and Ti-IrOy-Pt, which do
not favor the production of amino by-products (Chen, 2004; Li et al.,
2009; Dia et al., 2017). Also, the analysis of the percentage of dry matter
in the metallic sludge showed an average dryness of 4.2%. The literature
indicates that the percentage of dry matter in metallic sludge is closely
linked to the characteristics of the effluent and to the doses of coagulant
and flocculant used (Pouet and Grasmick, 1995).

3.3. Toxicity assessment of leachate treated by EC

Since these leachates are intended to be released into the natural
environment, their potential effect on aquatic organisms must be
assessed (LégisQuébec, 2014). On cumulative leachate treated by
continuous EC, bioassays were carried out to determine their toxicity.
Leachate treated by lagoon followed by EC, with an adjustment of the
final pH to values reaching neutrality (addition of 0.12 mL of HySO4
(99.9%)/L of leachate), leads to 10% of mortality in Rainbow trout and
Daphnia. While the leachate toxicity test without pH adjustment does
not induce mortality in trout. Since the exposure of these two different
species to the resulting leachate does not induce the mortality of 50% of
their population, the effluent is qualified as non-toxic (CEAEQ, 2018).
The literature reports that Rainbow trout and Daphnia magma are sensi-
tive, to different degrees, to nutrients including ammoniacal nitrogen
and to ionic content which can be described by total dissolved solids and
heavy metals (Blaise and Férard, 2005). Previous investigations
demonstrated that the toxicity of leachate treated by different processes,
and on different species, present zero to moderate mortality (Wong,
1989; Rutherford et al., 2000). However, the exposure of Vibrio fischeri
to the treated leachate effluent has shown a disturbance in its energy
metabolism, thus being manifested by the inhibition of its biolumines-
cence. This type of test is very sensitive, rapid, and inexpensive
compared to two other bioassays. Besides, interference can have an
impact on the quality of the test, in particular by the turbidity of the
effluent but also by its duration (15 min) which have certain limitations
of reliability (Froehner et al., 2000; Parvez et al., 2006).

4. Conclusion

The EC and EC/EO processes tested in batch for the tertiary treat-
ment of leachate gave a fairly global view on the post-treatment per-
formance. They resulted in quite similar clarification, phosphorus
removal and disinfection rates, at electric charge of 0.16 Ah/L, current
density of 18.2 mA/ em?, for 2.5 min of treatment time. In addition, both
EC and EC/EO were as effective as the physicochemical process adopted
by the leachate treatment plant and have achieved discharge goals in
one step. The EC process was more efficient compared to EC/EO process
due to its lower energy consumption and minimum by-products
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production especially chlorates, perchlorates.

Regarding the post-treatment of the leachate by continuous EC, the
reduction rates of COD, turbidity, total phosphorus, and total coliforms
were respectively 73, 72, 86 and 87% and the dryness of the metal
sludge was an average of 4.2%. The effluent at the end of the process
showed no toxicity to Rainbow trout and Daphnia, but disrupted the
energy metabolism of Vibrio fischeri probably due to the residual
turbidity of the treated leachate. The study on the temporal variability of
the characteristics of the leachate should be investigated to control and
optimize the treatment process, before scaling up EC as a replacement
for the chemical coagulation.
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